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The network of contacts in space-filling disk packings, such as the Apollonian packing, is examined. These
networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad
distribution of disk areas. A wide variety of topological and spatial properties of these systems is characterized.
Their potential as models for networks of connected minima on energy landscapes is discussed.
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I. INTRODUCTION

Since the seminal paper of Watts and Strogatz on small-
world networksf1g, there has been a surge of interest in
complex networks, both to characterize real-world networks
and to generate network models to describe their properties
f2–7g. The systems analyzed in this way have spanned an
impressive range of fields, including astrophysicsf8g, geo-
physics f9g, information technology f10g, biochemistry
f11,12g, ecologyf13g, and sociologyf14g. Initially, the focus
was on relatively basic topological properties of these net-
works, such as the average separation between nodes and the
clustering coefficient, to test whether they behaved like the
Watts-Strogatz small-world networksf1g, or the degree dis-
tribution to see if they could be classified as scale-free net-
works f15g.

As the field has progressed, however, the emphasis has
shifted away from these basic classifications to an increas-
ingly detailed characterization of the networks. For example,
on a topological level, there has been much recent interest in
both the correlationsf16g and community structuref17g
within a network.

There has also been increasing interest in how the me-
dium in which a network is embedded influences the network
properties. For spatial networks, this can often lead to some
kind of geographical localizationf18g. For example, in social
networks, acquaintances are more likely to share the same
neighborhood, and for the internet there is obviously a
greater cost associated with making longer physical connec-
tions f19g. To model these kinds of effects, there have been a
number of studies in which the preferential attachment rule
that leads to scale-free networksf15g has been altered to
include an additional distance dependence in the attachment
probability f20–23g. Typically, this leads to some crossover
away from scale-free behavior when the distance constraint
is sufficiently strong.

A different approach to understanding the interplay of
geography and topology has been to consider ways in which
a scale-free network can be embedded in Euclidean space
f24–27g. In most of these spatial scale-free networks, the
nodes are distributed homogeneously in spacef24–26g. The
heterogeneity that leads to the scale-free behavior instead

comes from the node dependence of the range of interac-
tions, i.e., high degree nodes have connections to nodes that
lie within a larger neighborhood of the node. The model of
Herrmannet al., however, shows the converse behaviorf27g.
Each node has the same interaction range; instead the scale-
free behavior is driven by an inhomogeneous density distri-
bution with high-degree nodes associated with regions of
high node density.

Our interest in spatial scale-free networks comes from
recent work characterizing the connectivity of the configura-
tion space of atomic clustersf28,29g. Configuration space
can be divided up into basins of attraction surrounding each
of the minima on the potential energy surface of the clusters
f30g. This then allows a network description of the potential
energy surface where the nodes correspond to the minima,
and two minima are linked if there is a transition state valley
directly connecting them. All links are therefore between ad-
jacent basins of attraction. Intriguingly, this “energy land-
scape” network was found to be scale-free. Since that initial
study, the configuration space of some polypeptide chains
has also been found to have a scale-free connectivityf31g.

This scale-free behavior cannot be explained by the usual
preferential attachment approachf15g because these net-
works are static, and are just determined by the potential for
the system. Nor are the spatial scale-free models described
above much help, because these models are not contact net-
works between spatially adjacent regions. For example, if
one were to associate each point in Euclidean space of these
models with the nearest node, the network of contacts be-
tween the resulting cells would not be scale-free. Instead, the
scale-free behavior of these spatial networks arises precisely
because there are more long-range connections between non-
adjacent nodes.

To try to further understand the energy landscape net-
works, a different approach must be taken. In Ref.f28g, it
was suggested that the scale-free behavior might reflect dif-
ferences in the basin areas, with the deeper minima having
large basins of attractionf32g with many connections to the
smaller basins surrounding them. For this to lead to a scale-
free topology, one would imagine that the basins have to be
arranged in some kind of hierarchical fashion with basins at
each level being surrounded by successively smaller basins.

Space-filling disk packings, such as the Apollonian pack-
ing depicted in Fig. 1, have just such features. In this paper,
we examine the contact networks for such packings to deter-
mine whether they might provide a useful model for the*Electronic address: jpkd1@cam.ac.uk
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energy landscape networks. In the final stages of the prepa-
ration of this work, Andradeet al. independently introduced
the idea of Apollonian networksf33g. In that work, only a
brief characterization of the topology of the two-dimensional
s2Dd Apollonian packing was given, before the emphasis
switched to the behavior of dynamical processes on these
networks. Here, we provide a much more detailed character-
ization of the topology of the 2D networksSec. II Ad, and
also analyze the networks associated with other self-similar
circle and hypersphere packingssSec. II Bd. Furthermore, as
our aim is to provide a model to help understand the energy
landscape networks, a particular emphasis is the relationship
between the topological properties of the networks and the
spatial properties of the packingssSec. IIId.

II. TOPOLOGICAL PROPERTIES

A. 2D Apollonian networks

To produce an Apollonian packing, we start with an initial
array of touching disks, the interstices of which are curvi-
linear triangles. In the first generation, disks are added inside
each interstice in the initial configuration, such that these
disks touch each of the disks bounding the curvilinear tri-
angles. The positions and radii of these disks can easily be
calculated using either the Soddy formulaf34g or by apply-
ing circular inversions. Of course, these added disks cannot
fill all of the space in the interstices, but instead give rise to
three smaller interstices. In the second generation, further
disks are added inside all of these new interstices, which
again touch the surrounding disks. This process is then re-
peated for successive generations. If we denote the number
of generations byt, where t=0 corresponds to the initial
configuration, ast→` the space-filling Apollonian packing
is obtained.

There are two initial configurations that are commonly
used. The first was used for Fig. 1, and has three mutually
touching disks all inside and in contact with a larger circle.
This configuration has the useful feature that all of the initial

disks are inside a curvilinear triangle formed by the other
three circles, so that their initial environment is equivalent to
that for any of the subsequent disks immediately after gen-
eration. This configuration is therefore more convenient
when analytically deriving the properties of the packing, be-
cause for the most part the same formulas apply to the initial
disks as to all other disks. However, the spatial nature of the
connections to the bounding circle is more ill-defined.

The second common initial configuration is just to have
three mutually touching disks as in Fig. 2, and in subsequent
generations to progressively fill the single curvilinear tri-
angle in the initial configuration. The properties of the initial
disks do not follow exactly the same trends as the subsequent
disks, but this configuration has the advantage that none of
the disks touch the interior boundary of another circle. The
numerical results presented will typically be for this initial
triangular configuration. However, we should emphasize that
the networks associated with these two initial configurations
have the same topological properties, except for the initial
disks.

Figure 2 illustrates how the Apollonian packing can be
used as a basis for a network, where each disk is a node in
the network and nodes are connected if the corresponding
disks are in contact. We shall call this contact network an
Apollonian networkf33g. Of course, it has an infinite number
of nodes. However, we shall generally consider the network
properties after a finite number of generations in the devel-
opment of the complete Apollonian network. From our ana-
lytical results, we can quickly obtain the properties of the
complete network by taking the limit of larget. However, the
numerical results are necessarily limited to finite-sized net-
works.

Figure 2 also shows how the network evolves with the
addition of new nodes at each generation. For each new disk
added, three new interstices in the packing are created that
will be filled in the next generation. Equivalently, for each
new node added, three new triangles are created in the net-
work, into which nodes will be inserted in the next genera-
tion. Therefore,

FIG. 1. An Apollonian packing of disks within a circle.

FIG. 2. sColor onlined The development of the 2D Apollonian
network inside the interstice between three mutually touching disks,
as the number of generations increases. In each picture, the network
is overlaid on the underlying packing.
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Dnvstd = nvstd − nvst − 1d = 3Dnvst − 1d, t . 1, s1d

wherenv is the number of nodes in the network.
For the Apollonian packing of a circle,nvs0d=4, and

Dnvs1d=4, if we treat the bounding circle on the same foot-
ing as the other three initial disks. It follows that

Dnvstd = 4 3 3t−1 and nvstd = 2s3t + 1d. s2d

The addition of each new node leads to three new edges.
Therefore,

Dnestd = nestd − nest − 1d = 3Dnvstd = 4 3 3t, s3d

where ne is the number of edges in the network. As
nes0d=6,

nestd = 2 3 3t+1. s4d

p, the fraction of all the possible pairs of nodes that are
actually connected, is given by

p =
2ne

nvsnv − 1d
=

3t+1

s3t + 1ds3t + 1/2d
<

1

3t−1 for large t.

s5d

Therefore, the Apollonian network becomes increasingly
sparse as its size increases. By contrast, the average degree
tends to a limiting value,

kkl =
2ne

nv
=

2 3 3t+1

3t + 1
<6 for larget. s6d

Surrounding each nodei areki empty si.e., not enclosing
any nodesd triangles. As new nodes are added at the center of
all these triangles,ki new connections will be created. There-
fore, at each step the degree of a node doubles, i.e.,

kist + 1d = 2kistd. s7d

Such a rule expresses a preferential attachmentf15g. The
number of new connections is linearly proportional to the
degree.

If tc,i is the step at which a nodei is created,kistc,id=3 and
hence

kistd = 3 3 2t−tc,i . s8d

Therefore,k can take a series of discrete values up tokmax
=332t. The fraction of the other nodes that the node with
maximum degree connects to is given by

kmax

nv − 1
=

3 3 2t

2 3 3t + 1
<S2

3
Dt−1

for large t s9d

and is a decreasing fraction of the total as the size of the
network increases. It follows that the degree distribution is
given by

pskd =5
nvs0d
nvstd

=
2

3t + 1
for k = 3 3 2t, tc = 0

Dnvstcd
nvstd

=
2 3 3tc−1

3t + 1
for k = 3 3 2t−tc, tc ù 1

0 otherwise

s10d

and that the cumulative degree distribution is

pcumskd =
3tc + 1

3t + 1
. s11d

Substituting for tc in this expression usingtc= t−log
sk/3d / log 2 gives

pcumskd =
3tsk/3d−log 3/log 2+ 1

3t + 1
<S k

3
D−log 3/log 2

for large t.

s12d

For a continuous degree distributionpskd,k−g, pcumskd
,k1−g. Therefore, the Apollonian network is scale-free and
the exponent of the degree distribution is

g = 1 +
log 3

log 2
= 2.585, s13d

as already noted in Ref.f33g. Apollonian networks hence
provide a new model for spatial scale-free networks. Impor-
tantly, in contrast to other two-dimensional spatial scale-free
networksf20–27g, the Apollonian network can be embedded
in a plane without any edges crossing. In Asteet al.’s
classification scheme, they hence have a genus of zerof35g.

Another important property of the network is the cluster-
ing, which provides a measure of the local structure within
the network. The clustering coefficient of nodei is the prob-
ability that a pair of neighbors ofi are themselves connected,

cistd =
2ni

con

kistdfkistd − 1g
, s14d

whereni
con is the number of connections between the neigh-

bors of i. At each stage, a ring of new connections passing
through all the nodes connected toi is generated. Therefore,

ni
constd = o

t8=tc,i

t

kist8d = 3s2t−tc,i+1 − 1d, s15d

and

cistd =
2s2t−tc,i+1 − 1d

2t−tc,is3 3 2t−tc,i − 1d

<
1

3 3 2t−tc,i−2 =
4

kistd
for t @ tc,i . s16d

Therefore, the clustering coefficient of a vertex shows the
same inverse proportionality to the degree as has been ob-
tained previously for other deterministic scale-free networks
f36–38g. This feature has been taken to be a signature of a
hierarchical structure to the networkf36,39g, but recently has
been shown to partially reflect disassortative correlations
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f40g. In the current networks, this feature can also be inter-
preted in terms of spatial localization. For a low-degree
node, its neighborhood only occupies a small local region in
the packing, and thus would be expected to have strong clus-
tering. By contrast, high-degree nodes have a more global
character and are connected to well-separated parts of the
packing, and so have low clustering.

The clustering coefficient for the whole graph can be de-
fined in two ways. The first is a generalization of Eq.s14d to
the whole graph, and is the probability that any pair of nodes
with a common neighbor are themselves connected. Thus,

C1 =
2oi

ni
con

oi
kiski − 1d

. s17d

The second definition ofC is as the average value of the
local clustering coefficient, i.e.,

C2 =
1

nv
o

i

ci . s18d

The difference between these two definitions is the relative
weight given to nodes with different degree. High-degree
nodes make a larger contribution toC1 because there will be
more pairs of nodes that have a high-degree node as a com-
mon neighbor, whereas all nodes contribute equally toC2.
Typically, C1,C2 because, as is the case here, higher-degree
nodes tend to have lower values ofci.

Substituting in and rearranging gives

C1 =
3t+1 − 1

12s22t−1 − 3t−1d
<

1

2
S3

4
Dt

for large t. s19d

The clustering coefficient goes down as the size of the
Apollonian network increases. However, when one compares
C to that for an Erdős-Renyi random graphf41,42g sCER

=pd, one obtains

C1

CER
<

1

6
S3

2
D2t

. s20d

That is, the Apollonian networks become increasingly more
clustered than a random graph, as their size increases.C2 can
be evaluated numerically. As shown in Ref.f33g, C2 tends to
a constant at larget of value 0.828.

In Ref. f33g, they also calculated the behavior oflave, the
average number of steps on the shortest path between any
two nodes.lave showed a small-world behavior, scaling sub-
logarithmically with network sizef33g. The important role
played by the larger disks in mediating these short paths is
illustrated in Fig. 3. The vertex betweenness of a node is
defined as the fraction of all the shortest paths that pass
through that node. Fort=8, 40% of these paths pass through
the central disk in the packingsFig. 2d. Furthermore, the
dependence of the vertex betweenness on the degree is not
far from a power law. This type of behavior is common for
scale-free networksf43g.

Correlations in networks, particularly with respect to the
degree, have been a subject of increasing interestf16g. This
is partly because the behavior of models defined on such

networks has been often found to depend sensitively not only
on the degree distribution, but also on how correlated the
networks aref44–47g. For example,knnskd, the average de-
gree of the neighbors of nodes with degreek, should be
independent ofk for an uncorrelated network.

We can calculateknn for the Apollonian network using Eq.
s7d to work out how many connections are made at a particu-
lar step to nodes with a particular degree. Except for the
initial disks, no disks created in the same generation, i.e.,
with the same degree, will be connected. All connections to
nodes with higher degree are made at the generation step,
and then connections to lower-degree nodes are made at each
subsequent step. This leads to the expression

knnskd =
1

Dnvstcdkstc,td
S o

tc8=0

tc8=tc−1

Dnvstc8dkstc8,tc − 1dkstc8,td

+ o
tc8=tc+1

tc8=t

Dnvstcdkstc,tc8 − 1dkstc8,tdD s21d

for k=332t−tc and wherekstc,td is the degree of a node at
generationt that was created at generationtc. The first sum
corresponds to the connections made to nodes with higher
degreesi.e., tc8, tcd when the node was created attc, and the
second sum to the connections made to the current lowest-
degree node at each steptc8. tc. After substitution and evalu-
ation of the sums, the above expression simplifies to

knnskd = 9S4

3
Dtc

− 6 +
3

2
st − tcd. s22d

After the initial generation step,knn for a node increases
linearly with age.

Writing the above equation in terms ofk gives

knnskd = 9S4

3
DtS k

3
D−logs4/3d/log 2

− 6 +
3 logsk/3d

2 log 2
. s23d

knnskd is roughly a power-law function ofk with exponent
−0.415. The exponent is negative, implying that the network
is disassortative, i.e., nodes are more likely to be linked to

FIG. 3. The dependence of the vertex betweenness on degree for
the Apollonian network witht=8. There are points representing
each disk and the line connects the average values for a givenk.
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nodes with dissimilar degree. When normalized by the ex-
pected value ofk for an uncorrelated network

knn
uncorr=

kk2l
kkl

= 6S4

3
Dt

− 3, s24d

knnskd has a universal form independent of network size for
large t and smallk. Namely,

knnskd
knn

uncorr <
3

2
S k

3
D−logs4/3d/log 2

. s25d

This is illustrated in Fig. 4. The upward curvature away from
this power-law form at largek is caused by the logarithmic
term in k in Eq. s22d.

It has been shown that disassortativity can often arise in
networks where self-connections and multiple edges are ex-
cludedf48g. Therefore,knn was compared to that for random
networks with the same degree distribution, which were pre-
pared using the switching algorithmf16,49g. The randomized
networks also show disassortativity, but to a somewhat lesser
degreesFig. 4d. The additional disassortativity arises because
connections to the nodes with the same degree cannot occur
in the Apollonian networksexcept for the initial disksd.

In particular, as the nodes withk=3 are only connected to
higher degree nodes,knns3d is significantly higher than that
for the randomized graphsFig. 4d. By contrast,knn for the
rest of the network is lower than that for the randomized
graphs. This is also because of the lack of same-degree con-
nections, as this gives the higher degree nodes many more
connections to the most numerousk=3 nodes than for the
randomized graphs.

An assortativity coefficientr has been proposed that mea-
sures the degree ofsdisdassortativity of a propertyf50g, and
is defined as

r =
kstle − kslektle

kstle,assort− kslektle
, s26d

wheres and t correspond to the property of interest at either
end of an edge,e denotes that the averages are over all
edges, and “assort” means that the average is for a perfectly
assortative network.r is therefore a measure of the correla-
tions in the property compared to that for a perfectly assor-
tative network. Disassortative networks haver ,0.

It follows that the assortativity coefficient for the degree
is given by

rk =
kklkk2knnskdl − kk2l2

kklkk3l − kk2l2 . s27d

Expressions for the quantities in the above equation can be
relatively easily obtained from the degree distribution. This
gives

rk =

3tF2t − 3 + 4S3

4
DtG − 22tF2 −S3

4
DtG2

3t2t

5
F6 −S3

8
DtG − 22tF2 −S3

4
DtG2

<−
10

3
S2

3
Dt

for large t. s28d

rk is always negative, indicating disassortativity. However,
its magnitude goes to zero as the size of the network in-
creasessFig. 5d. This may seem surprising sinceknn always
has a negative slope and has an effective functional form that
is independent of sizefEq. s25dg. However, the convergence
of r to zero is simply because the denominator corresponding
to the correlations in a perfectly assortative network scales
more rapidly with size than the numerator, i.e., as 6t com-
pared to −4t fEq. s28dg.

We also looked at the community structure of this net-
work using the algorithm of Girvan and Newmanf17g. It
works by starting with the complete network and at each step
removing the edge that has the maximum edge betweenness,
where this quantity is recalculated after the removal of every

FIG. 4. Comparison ofknn/knn
uncorr for the 2D Apollonian net-

work to that for randomized versions of the networks. Lines corre-
sponding to different values oft s t=7–15 and 7–8 for the Apollo-
nian and randomized networks, respectivelyd have been plotted to
emphasize the universal form of this function for the Apollonian
network.

FIG. 5. Assortativity coefficients,rk andrA, as a function of the
number of generationst. The solid lines are for the 2D Apollonian
network, and the dashed lines for randomized versions of these
networks with the same degree distribution.
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edge and is defined as the fraction of all the shortest paths
that pass through an edge. If there is more than one edge
with the same maximum edge betweenness, they are all re-
moved at the same step. Thus the network is progressively
divided intonv communities. To decide which division of the
network represents the best choice, the modularityQ is cal-
culated at each step, and the division of the system with
maximumQ is considered to be the bestf51g. Q is defined as
the fraction of edges that are within the communities com-
pared to that expected for a random graph with the same
degree distribution.

The best division of the packing into communities is
shown in Fig. 6 fort=6 and hasQ=0.5938. This value is
comparable to some of the higher values found for networks
considered previouslyf51,52g. Interestingly, the Apollonian
network’s combination of community structure and disassor-
tativity is in contrast to most of the other networks with high
Q, which also tend to be strongly assortative. As expected,
the communities are spatially localized. As the algorithm
only used topological information, this result implies that the
spatial embedding of the network is clearly reflected in its
topology.

The algorithm for detecting communities described above
cannot actually break the threefold symmetry of the packing.
The best threefold symmetric division has the central disk as
its own community. However, by assigning this disk to one
of the adjacent communities,Q improves from 0.5872 to
0.5938. We have also applied the faster algorithm described
in Ref. f52g, however slightly lower values ofQ were
obtained.

It is interesting to examine how the network is progres-
sively broken into separate communities as more edges are
removed. This can be represented by a dendrogram as in Fig.
7, which shows the number of communities and their rela-
tionship at each step in the algorithm. Every time two sets of
disks become disconnected, their corresponding lines split.
The first 53 sets of edges removed only break the packing
into two communities; instead the effect is to make the con-

tact matrix sparser. Further removal of sets of edges then
relatively quickly breaks the packing into a large number of
communities.

It is evident thatQ has quite a broad maximum as a func-
tion of the number of communities.Q is greater than 0.3
when there are between 6 and 88 communities. Given the
self-similar nature of the packing, one would not expect
there to be a strongly preferred size for the communities.
Similarly, in the deterministic scale-free networks, the hier-
archical modularity means that there is no clearly preferred
size for the modules at which the modularity is significantly
enhancedf39g.

B. Other self-similar packings

The 2D Apollonian network is only one example of a
space-filling self-similar packing. In a similar way to the last
section, a detailed characterization of the topology of contact
networks associated with other self-similar packings could
be derived. However, here we do not wish to give such a
comprehensive account, but to illustrate how some of the key
features of these networks, particularly the exponent of the
degree distribution, depend on the nature of the packing.

First, we shall examine higher-dimensional Apollonian
packings. The initial configuration that is directly equivalent
to Fig. 1 is to have touching hyperspheres at the corners of a
d-dimensional simplex that is enclosed within and touching a
larger hypersphere. The analysis of the last section is rela-
tively easy to generalize to these cases.

As now nvs0d=Dnvs1d=sd+2d and Dnvstd=sd+1dDnvst
−1d for t.1, it follows that

Dnvstd = sd + 2dsd + 1dt−1 s29d

and

FIG. 6. The best division of the 2D Apollonian packing into
communities fort=6. The disks in the different communities have
been displaced with respect to each other for clarity. The modularity
Q=0.5938.

FIG. 7. A dendrogram showing the progressive division of the
2D Apollonian packing into communities fort=6 as those sets of
edges with largest edge betweenness are removed. At right no edges
have been removed and there is a single community of sizenv,
whereas at left all edges have been removed and there arenv com-
munities of size 1. The number of steps in which sets of edges have
been removed increases linearly from right to left. In total, 84 sets
of edges were removed. The threefold symmetry of the packing is
retained throughout this process. The vertical dashed line indicates
the set of communities with largestQ. The inset shows howQ
varies as the network is broken up into communities.
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nvstd =
sd + 2d

d
fsd + 1dt + d − 1g. s30d

The higher-dimensional equivalent of Eq.s7d is not so
useful for calculating the degree distribution, for example for
a three-dimensional Apollonian packingkist+1d=3kistd−4.
Instead, an alternative approach has to be used. Each new
neighbor of a nodei createsd new d-simplices involvingi.
In the next generation thesed-simplices will be the sites for
new nodes that are also neighbors ofi. Therefore,

Dkistd = kistd − kist − 1d=dDkist − 1d, t . tc,i + 1. s31d

As kistc,id=d+1 andDkistc,i +1d=d+1,

Dkistd = sd + 1ddt−tc,i−1 s32d

and

kistd =
d + 1

d − 1
sdt−tc,i + d − 2d. s33d

By an equivalent analysis to that ford=2, one can show that
pcumskd follows a power law for larget where

g = 1 +
logsd + 1d

log d
. s34d

Hence, the Apollonian networks associated with higher-
dimensional packings are also scale-free networks. The ex-
ponentg decreases as the dimension of the Apollonian pack-
ing increases, tending to 2 in the limit of larged. This is
noteworthy since the value ofg can have significant effects
on network propertiesf53g.

By physical arguments it is easy to see that these higher-
dimensional Apollonian networks will have very similar
topological properties to the two-dimensional case that
we have studied in detail. The networks will again be dis-
assortative with respect to degree because of the lack of con-
nections between nodes with the same degree. The hierarchi-
cal structure and the more localized character of the connec-
tions involving low-degree nodes will lead to a strong
dependence of the clustering coefficient on degree. This spa-
tial localization will also lead to strong community structure.
Larger hyperspheres are also more likely to have a larger
degree.

To illustrate how these conjectures can be backed up
analytically, here we derive a general expression for the local
clustering coefficient. We first need to calculate the number
of connections between the neighbors of a node. On genera-
tion a node is surrounded by ad-dimensional simplex, and
then at subsequent steps every new neighbor of a node con-
tributesd new connections toni

con. Hence,

ni
constd =

dsd + 1d
2

+ o
t8=tc+1

t

dDkistd

=
d + 1

d − 1
dt−tc+1 +

dsd + 1dsd − 3d
2sd − 1d

. s35d

Substituting into Eq.s14d and taking limits gives

cistd <
2d

kistd
for t @ tc,i . s36d

Again, the local clustering coefficient is inversely propor-
tional to degree.

In the Apollonian packing of disks, the smallest loops in
the contact network have size three, i.e., they are triangles.
However, space-filling packings of disks are possible, where
the smallest loops in the contact network are polygons with
more than three sides. Examples in which the loops all have
an even number of sides are of particular interest since they
can act as space-filling bearings, where all the disks can ro-
tate at the same time without slipf55,57g. An example of a
space-filling bearing with “base loop size” 4 and “n=m” is
shown in Fig. 8. The procedures to construct such packings
are more complex than for Apollonian packings and are de-
scribed in detail in Refs.f54–56g.

Figure 9 illustrates how the contact network associated
with this packing develops for a subset initially consisting of
four touching disks. At each stagem+1 new nodes are pro-
duced for each empty quadrilateral, dividing the quadrilateral
into a furtherm+2 new quadrilaterals to which new nodes
will be added at the next generation.

Assuming that there is one quadrilateral initiallyst=0d,
the number of empty quadrilaterals after stept is sm+2dt.
Hence,

Dnvstd = sm+ 1dsm+ 2dt−1 s37d

and

FIG. 8. A space-filling bearing between two half-planes. The
pattern can be repeated to the left and to the rightad infinitum. In
the nomenclature of Refs.f54–56g, this packing is from Family 1
and has base loop size 4 andn=m=2. The half-planes at the top and
bottom can be considered as disks with infinite radius.

FIG. 9. sColor onlined The development of the contact network
for a subset of the packing in Fig. 8 initially consisting of four
touching disks, one of which has infinite radius. The edges in the
network connect the centers of the disks that touch. Those edges
involving the infinitely large disk are parallel, but to emphasize that
they do actually connect to the same node, a box has been added
that enclosed the ends of these edges.
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nv8std = nvstd − nvs0d = sm+ 2dt − 1. s38d

We exclude the initial boundary disks in the above because
they have slightly different properties from the rest of the
disks in the iterative scheme. Besides, for sufficiently larget
their contribution is negligible.

Aside from the first step after a node is created, a node
only gains new connections at every other step, because the
new connections are added across alternating diagonals of
the quadrilaterals,

kist + 2d = sm+ 2dkistd. s39d

Therefore,

kistd = 2sm+ 2dst−tc,id/2 for t − tc,i even. s40d

In the same way as before, this leads to

pcumskd =
sm+ 2dtsk/2d−2 − 1

sm+ 2dt − 1
<S k

2
D−2

for t large.

s41d

Henceg=−3, independent ofm. Unlike the Apollonian pack-
ings,Dnv andki increase by the same factorm+2, and so this
cancels. The power of 2 in the above equation arises because
this increase inki occurs only at every other step. The situ-
ation is more complicated for the casemÞn, because there
are two subpopulations of disks, and the degree distribution
of each subpopulation obeys its own power law.

We should note that the contact networks for these space-
filling bearings have no triangles, and so the clustering coef-
ficient defined by Eq.s17d is zero. However, generalized
clustering coefficients probing higher-order loops have been
proposed. Clearly for these space-filling bearings the number
of “squares”sloops of length 4d will be significantly higher
than for a random network, although we have not sought to
quantify this.

The results in this section illustrate that the contact net-
works associated with other space-filling disk and hyper-
sphere packings are also scale-free, but that the exponent of
the degree distribution is not a universal constant but de-
pends on the nature of the packing. We could have also con-
sidered other examples, such as scale-free bearings with base
loop size greater than 4f57g and non-Apollonian packings of
spheresf58,59g, and it is likely that these again show some-
what different behavior.

III. SPATIAL PROPERTIES

The 2D Apollonian packing is a well-known example of a
fractal f60g, and has many of the typical fractal properties.
For example, inside every curvilinear triangle no matter how
small, the same pattern of disk packing reoccurs, i.e., it is
self-similar. Similarly, the estimated total length of the cir-
cumferences of all the circles continues to increase as the
resolution of the measurement increases. One of the most
important properties of such a packing is its fractal dimen-
sion. To understand this quantity, we need to define more
carefully the set for which we wish to know the dimension.
In the packing, the disks are all considered to be open, that

is, the set of points associated with a diskDi contains all the
points inside the disk boundary, but not the boundary itself.
The residual setR is then the points that are not part of
any of the open disks in the packing, or more formallyR
=U−øi=1

` Di, whereU is the set that is being packed.dF, the
fractal dimension ofR, is the quantity of interest.

dF must obey 1,dF,2. The upper bound is obvious,
because, by virtue of the space-filling nature of the Apollo-
nian packing,R must have zero area. The lower bound fol-
lows from the fact thatoi=1

` r i =`, wherer i is the radius of
disk Di; i.e., the total length of the boundaries is infinitef61g.
This result can most easily be visualized by projecting the
boundaries of each disk onto a diameter of the circle bound-
ing the region that is being packed. Points on this diameter
are projected onto infinitely often. These bounds imply the
dimension ofR must be fractional, and hence the packing is
fractal.

So far, no analytic formula for the value of the fractal
dimension for the 2D Apollonian packing has been obtained,
but instead its numerical value has been estimated with in-
creasing precisionf54,62–66g. Its value is 1.3057. It has
been suggested that the fractal dimension of the Apollonian
packing is the minimum for any space-filling disk packing
f67g, because at each step of the generating process the disk
with the maximum possible radius is inserted into each cur-
vilinear triangle, thus maximizing the area of the region that
must be outside of the residual set. The fractal dimensions
found for 2D space-filling bearings are consistent with this
assertionf54,57g; all have larger values than that for the
Apollonian packing, with the largest found being 1.803. In
fact, as pointed out by Melzak, it is easy to generate a disk
packing with dimension arbitrarily close to 2f67g. If each
disk in the Apollonian packing in Fig. 1 is replaced by a
suitably scaled image of the whole Apollonian packing, a
new packing is obtained with higher fractal dimension. If
this process is repeatedad infinitum, a disk packing with a
fractal dimension of 2 is eventually obtained.

For space-filling packings ofd-dimensional hyperspheres,
there are similar limits for the fractal dimension, namelyd
−1,dF,d. The only calculations have been for three di-
mensions. The Apollonian packing hasdF=2.4739f68g, and
the values for space-filling bearings are again largerf59g.

The fractal dimension is of particular interest here, be-
cause it provides a means to characterize the properties of the
disk areas. Melzak introduced the exponent of a packing,dr,
defining it as the minimum value ofs for which oi=1

` r i
s no

longer diverges. It was proved by Boyd that for the Apollo-
nian packing,dF=dr f65g. To examine the divergence prop-
erties of this sum, we can replace the sum by an integral,
because the divergence is controlled by the disks with small
radii, for which the distribution of radii is quasicontinuous.
As this distribution follows a power law,psrd, r−b f69g, we
have

o
i=1

`

r i
s < E

0

rmax

rspsrddr , E
0

rmax

rs−b

=F rs+1−b

s+ 1 −b
G

0

rmax

=` if s, b − 1. s42d
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Hence,dF=dr =b−1. This allows the fractal dimension to be
determined from the exponent of the numerically obtained
psrd f66g. It follows that the area distribution is given by
psAd=A−s1+dF/2d for the 2D case and more generally for pack-
ings of d-dimensional hyperspheres the volume distribution,

psVd = V−s1+dF/dd < V−2 for larged. s43d

Given the bounds fordF, the exponent must lie between
2–1/d and 2.

One of the areas that is of most interest to us, and which
is particularly relevant to the energy landscape networks, is
the connection between the spatial properties of the Apollo-
nian packings and the topological properties of the Apollo-
nian networks. In Fig. 10, we show the correlation between
the disk area and degree. As expected, the larger disks gen-
erally have a larger degree. However, for a givenk there is a
wide variety of disk areas. The largest disks are associated
with the crevices between the initial disks, whereas the
smallest disks are obtained by following a spiral pathway in
the network where each disk along the path is connected to
one circle in each of the three previous generations.

More specifically, the logarithmic average of the disk area
for a givenk closely follows a power law. AssumingAskd
,ka and using the identitypsAddA/dk=pskd, one can show
thata=2sg−1d / sb−1d. For the 2D Apollonian network, this
leads to the predictiona=2.428. A line with this exponent is
plotted for comparison in Fig. 10, and broadly follows the
averagekAskdl. By contrast, the average expfklog Askdlg has
an exponent of 2.62.

Although the correlations associated with the degree are
most commonly studied, one can use Eq.s26d to define an
assortativity coefficient with respect to any property. Here,
we examine the correlations in the areas of touching disks.
From the behavior ofrA in Fig. 5 one can see that there is
some slight disassortativity, but much weaker than for the
degree and with little difference from that for the randomized

graphs. However, if there was no variation in the areas of the
disks with a givenk si.e., all the areas exactly obeyed the
power-law dependence ofk that characterizes the averaged,
then rA and rk would be very similar. Instead, because there
is such a large scatter around the average values—over seven
decades for thek=3 disks in Fig. 10—the effect of the lack
of connections between nodes with the same degree only
weakly carries over to disks with similar areas.

These effects can be examined in more detail by calculat-
ing Ann, the average area of the neighbors of a disk. Weak
disassortativity is evident over the majority of the range of
areas, except for the smallest disks, which show strong as-
sortativity sFig. 11d. This latter effect is simply because the
smaller disks in the last generation are connected to the
smaller disks in the previous generations, as with the spiral
pathways mentioned above. Interestingly, Fig. 11 clearly di-
vides the disks into two sets depending on whether they are
in contact with one of the initial disks, and this is the source
of the large fluctuations in the average value ofAnn at inter-
mediate values of the disk area.

IV. DISCUSSION

Our main motivation for studying the properties of the
Apollonian networks is their potential to act as a useful
model for the energy landscape networks. However, there is
one major difference between the two systems. The Apollo-
nian packings contain an infinite number of disks or hyper-
spheres, whereas configuration space is divided up into a
finite number of basins, albeit a number that is an exponen-
tially increasing function of the number of atoms in the
systemf70,71g.

There are two ways of creating a finite network from the
complete Apollonian network. The first is to consider the
network produced after a finite number of generations, and is
the one we have mainly used so far. The second is to con-

FIG. 10. The correlation of disk area with degree for the 2D
Apollonian packingsiterated to 15 generationsd. There is a dot rep-
resenting each disk. The two lines with data points represent the
average value of the area for a given degree, and correspond to both
the normal and logarithmic averages. In addition, lines correspond-
ing to sk/kmaxd2.62 and sk/kmaxd2.428 have been plotted for
comparison.

FIG. 11. sColor onlined The average area of the disks that touch
a disk against the area of that disk. The lines are binned averages
for the Apollonian networks witht=8 and a randomized version of
that network. There is a data point for each disk in the Apollonian
packing. Those represented by a cross are in contact with at least
one of the three initial disks, and those represented by a diamond
are not.
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sider the network containing only disks that are larger than a
certain size. The wide distribution of areas for a givenk in
Fig. 10 indicates that there could potentially be significant
differences. We know that the first will have a scale-free
degree distribution, and the second a power-law distribution
of radii up to their respective cutoffs, but what about the
other way round?

In Fig. 12sad, the distribution of radii is shown after dif-
ferent numbers of generations. These distributions approxi-
mately follow the expected power law for intermediate val-
ues of the radii, but this range becomes increasingly small as
t decreases. Furthermore, at smallr the lines curve away
from this power law, because the finite packings only contain
a small fraction of the total number of disks in the complete
packing with thatr.

The degree distributions for networks generated using a
size cutoff are shown in Fig. 12sbd. The distributions still
follow a power law, and are actually smoother, sincek is no
longer just restricted to the values given by Eq.s8d. How-
ever, the exponent is slightly smaller than predicted by Eq.
s13d. The effect of the size cutoff is to only include the larger

disks from the later generations, which are in turn more
likely to be connected to the larger higher-degree disks. For
example, for a radius cutoff at 0.0001% of that of the largest
disk, the first disks below the size cutoff occurred in the 13th
generation, and the last disks included were in the 706th
generation.

Preliminary results for the basin area distributions for the
small clusters used to generate the energy landscape net-
works f72g look quite like Fig. 12sad, suggesting that Apol-
lonian networks with a given number of generations are the
more appropriate finite version for comparison with these
systems. Furthermore, there are then some useful parallels
betweent and N, the number of atoms in the cluster. For
example, the number of minima increases exponentially with
N and the number of disks/hyperspheres in the Apollonian
networks have a similar dependence ont fEqs.s2d ands30dg.
Similarly, as eithert or N increase, both types of networks
become increasingly sparsefEq. s5dg, have a smaller absolute
value for the clustering coefficientC1 fEq. s17dg, but a larger
value relative to that for an Erdős-Renyi random graphfEq.
s20dg f28,29g.

Other similarities between the two types of network in-
clude features that are quite common for scale-free networks,
such as the dependence of vertex betweenness and local clus-
tering coefficient on degree. Both are also disassortative
f29g, however there is greater community structure in the
Apollonian networksf72g. There are also similar relation-
ships between the topological and spatial properties, such as
for the dependence of disk or basin areas onk f72g.

One of the interesting possibilities raised by the current
study is the signature of the scale-free topology of the Apol-
lonian network in the power-law behavior of the disk areas.
Currently, mapping out the whole network of connections
between minima on an energy landscape is only feasible for
systems of very small size. Nor are there methods available
to construct a statistical representation of the whole network
from a finite sample. Therefore, it is hard to test how generic
is the scale-free behavior observed for the clusters. However,
the distribution of the hyperareas of the basins of attraction
on an energy landscape is a static quantity that could poten-
tially be statistically sampled for a system of arbitrary size
f32g. If this distribution exhibited a power law with exponent
−2 fEq. s43dg, it would strongly suggest that underlying this
was a scale-free energy landscape network, as for the
Lennard-Jones clusters. Preliminary calculations indicate
that this is the casef72g.

V. CONCLUSIONS

We have analyzed the properties of the contact networks
of space-filling packings of disks and hyperspheres, focusing
on the Apollonian packing of two-dimensional disks. Their
topological properties include a scale-free degree distribution
whose exponent depends on the nature of the packing, high
overall clustering, a local clustering coefficient that is in-
versely proportional to degree, disassortativity by degree,
and strong community structure.

These networks have many similarities to other determin-
istic scale-free networks introduced and analyzed recently

FIG. 12. sad The cumulative size distribution of the disks for an
Apollonian packing after a finite number of generations. The lines
are labeled by their value oft, and an additional straight line with
the exponent expected for the complete Apollonian packing has
been added for comparison.sbd The cumulative degree distribution
for a series of Apollonian networks where only disks with radii at
leastx% of that of the largest disk contribute. The lines are labeled
by their value ofx, and additional straight lines have been added for
comparison, one of which has the exponent expected for the com-
plete Apollonian packing.
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f36–38,73,74g, but with the additional feature that they have
a well-defined spatial embedding. For this reason, we have
suggested that these packings provide a useful model spatial
scale-free network that may help to explain the properties of
energy landscapes and the associated scale-free network of
connected minima. In particular, the scale-free topology of

the Apollonian networks reflects the power-law distribution
of disk sizes. Similarly, configuration space can be divided
up into basins of attraction that surround the minima on the
energy landscape. A similar power-law distribution for the
hyperareas of these basins might thus provide an explanation
for the pattern of connections between the minima.
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