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Self-similar disk packings as model spatial scale-free networks
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The network of contacts in space-filling disk packings, such as the Apollonian packing, is examined. These
networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad
distribution of disk areas. A wide variety of topological and spatial properties of these systems is characterized.
Their potential as models for networks of connected minima on energy landscapes is discussed.
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[. INTRODUCTION comes from the node dependence of the range of interac-
) ) tions, i.e., high degree nodes have connections to nodes that
Since the seminal paper of Watts and Strogatz on smallie within a larger neighborhood of the node. The model of
world networks[1], there has been a surge of interest inHerrmannet al, however, shows the converse behay.
complex networks, both to characterize real-world networksEach node has the same interaction range; instead the scale-
and to generate network models to describe their propertieigee behavior is driven by an inhomogeneous density distri-
[2-7]. The systems analyzed in this way have spanned abution with high-degree nodes associated with regions of
impressive range of fields, including astrophydi6$ geo-  high node density.
physics [9], information technology[10], biochemistry Our interest in spatial scale-free networks comes from
[11,12, ecology[13], and sociology14]. Initially, the focus  recent work characterizing the connectivity of the configura-
was on relatively basic topological properties of these nettion space of atomic clustef28,29. Configuration space
works, such as the average separation between nodes and @ be divided up into basins of attraction surrounding each
clustering coefficient, to test whether they behaved like th@f the minima on the potential energy surface of the clusters
Watts-Strogatz small-world network4], or the degree dis- [30]. This then allows a network description of the potential

tribution to see if they could be classified as scale-free net€N€rgy surface where the nodes correspond to the minima,
works [15]. and two minima are linked if there is a transition state valley

As the field has progressed, however, the emphasis héjé'rectly connecting them. All links are therefore between ad-
’ ! acent basins of attraction. Intriguingly, this “energy land-

shifted away from these basic classifications to an incread®

) X o scape” network was found to be scale-free. Since that initial
ingly detailed characterization of the networks. For example_Study’ the configuration space of some polypeptide chains

on a topological level, there has been much recent interest Nas also been found to have a scale-free connecfigity
both the correlationd16] and community structur¢17] This scale-free behavior cannot be explained by the usual

W't_?'r? a nﬁtworlr. b . S inh h referential attachment approa¢h5] because these net-
di ere h'a?] also eel?_ mcregsg:jg (;n_te}lrest n cr’]W the M&zorks are static, and are just determined by the potential for
lum in which a network is embedded influences the networky, o oy tem Nor are the spatial scale-free models described

p_roperties. For spatial ne;wo.rks, this can often Ie_ad t0 SOM&p4ve much help, because these models are not contact net-
kind of geographical localizatiof18]. For example, in social works between spatially adjacent regions. For example, if

number of studies in which the preferential attachment rul
that leads to scale-free network$5] has been altered to
include an additional distance dependence in the attachme
probability [20-23. Typically, this leads to some crossover
away from scale-free behavior when the distance constrai
is sufficiently strong.

A different approach to understanding the interplay of

$ecause there are more long-range connections between non-
adjacent nodes.

1o try to further understand the energy landscape net-
works, a different approach must be taken. In R&g], it

Was suggested that the scale-free behavior might reflect dif-
ferences in the basin areas, with the deeper minima having

h q I has b id i whi léarge basins of attractiof82] with many connections to the
geography and topology has been to consider ways In WhICB 5 er hasins surrounding them. For this to lead to a scale-

a scale-free network can he embedded in Euclidean SPaGfee topology, one would imagine that the basins have to be
[24-27. In most of these spatial scale-free networks, the

o . arranged in some kind of hierarchical fashion with basins at
nodes are distributed homogeneously in spi@ee-26. The edach level being surrounded by successively smaller basins.

heterogeneity that leads to the scale-free behavior insteal Space-filling disk packings, such as the Apollonian pack-

ing depicted in Fig. 1, have just such features. In this paper,
we examine the contact networks for such packings to deter-
*Electronic address: jpkd1l@cam.ac.uk mine whether they might provide a useful model for the
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FIG. 2. (Color online The development of the 2D Apollonian
network inside the interstice between three mutually touching disks,
as the number of generations increases. In each picture, the network
is overlaid on the underlying packing.

FIG. 1. An Apollonian packing of disks within a circle.

] disks are inside a curvilinear triangle formed by the other
energy landscape networks. In the final stages of the prepgnree circles, so that their initial environment is equivalent to
ration of this work, Andradet al. independently introduced  that for any of the subsequent disks immediately after gen-
the idea of Apollonian networkE33]. In that work, only a  eration. This configuration is therefore more convenient
brief characterization of the topology of the two-dimensionalyhen analytically deriving the properties of the packing, be-
(2D) Apollonian packing was given, before the emphasiscayse for the most part the same formulas apply to the initial
switched to the behavior of dynamical processes on thesgisks as to all other disks. However, the spatial nature of the
networks. Here, we provide a much more detailed charactegonnections to the bounding circle is more ill-defined.
ization of the topology of the 2D networtSec. Il A), and The second common initial configuration is just to have
a_Iso analyze the networks associated with other self-similaghree mutually touching disks as in Fig. 2, and in subsequent
circle and hypersphere packin@Sec. Il B. Furthermore, as  generations to progressively fill the single curvilinear tri-
our aim is to provide a model to help understand the energyngle in the initial configuration. The properties of the initial
landscape networks, a particular emphasis is the relationshifisks do not follow exactly the same trends as the subsequent
between the topological properties of the networks and th@jsks, but this configuration has the advantage that none of

spatial properties of the packingSec. Il). the disks touch the interior boundary of another circle. The
numerical results presented will typically be for this initial
Il. TOPOLOGICAL PROPERTIES triangular configuration. However, we should emphasize that

the networks associated with these two initial configurations
have the same topological properties, except for the initial
To produce an Apollonian packing, we start with an initial disks.
array of touching disks, the interstices of which are curvi- Figure 2 illustrates how the Apollonian packing can be
linear triangles. In the first generation, disks are added insidesed as a basis for a network, where each disk is a node in
each interstice in the initial configuration, such that thesé¢he network and nodes are connected if the corresponding
disks touch each of the disks bounding the curvilinear tri-disks are in contact. We shall call this contact network an
angles. The positions and radii of these disks can easily bApollonian networl{33]. Of course, it has an infinite number
calculated using either the Soddy form({igd] or by apply-  of nodes. However, we shall generally consider the network
ing circular inversions. Of course, these added disks cannqgiroperties after a finite number of generations in the devel-
fill all of the space in the interstices, but instead give rise toopment of the complete Apollonian network. From our ana-
three smaller interstices. In the second generation, furthdytical results, we can quickly obtain the properties of the
disks are added inside all of these new interstices, whiclstomplete network by taking the limit of largeHowever, the
again touch the surrounding disks. This process is then reaumerical results are necessarily limited to finite-sized net-
peated for successive generations. If we denote the numbweorks.
of generations byt, wheret=0 corresponds to the initial Figure 2 also shows how the network evolves with the
configuration, ag— « the space-filling Apollonian packing addition of new nodes at each generation. For each new disk
is obtained. added, three new interstices in the packing are created that
There are two initial configurations that are commonlywill be filled in the next generation. Equivalently, for each
used. The first was used for Fig. 1, and has three mutuallpew node added, three new triangles are created in the net-
touching disks all inside and in contact with a larger circle.work, into which nodes will be inserted in the next genera-
This configuration has the useful feature that all of the initialtion. Therefore,

A. 2D Apollonian networks
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An,(t) =n,(t) - n,(t—-1) =3An,(t-1), t>1, (1) ( n,(0) 2

n,(t) T3l
p(k) =9 An,(t) _2x 3

fork=3x2', t,=0

wheren, is the number of nodes in the network.
For the Apollonian packing of a circlen,(0)=4, and

fork=3x 2% t,=1

An,(1)=4, if we treat the bounding circle on the same foot- n,(t) 3+1
ing as the other three initial disks. It follows that L 0 otherwise
An®=4x 31 and nH=23+1. (2 (10)
and that the cumulative degree distribution is
The addition of each new node leads to three new edges. ;
Therefore, - 3e+1
Peunl®) = 5,7 (11)

= - — = - t
Ang(t) = ne(t) ~ne(t— 1) = 3An, (1) =4 X 3, S Substituting for t. in this expression usingt.=t-log

where n, is the number of edges in the network. As (kr3)7log 2 gives

ne(0)=6, 3t(k/3)—log 3flog 24 q k \ ~log 3/log 2
Peur(K) = 341 ~ 3 for larget.
Ne(t) =2 x 3", (4) 1)
p, the fraction of all the possible pairs of nodes that areror a continuous degree distributiop(k) ~ K™, peum(K)
actually connected, is given by ~ k™. Therefore, the Apollonian network is scale-free and
the exponent of the degree distribution is
S 2Me 3" o for larget |
Thn,-D T @ nE+2 3 et y=1+293_; 5gs, (13)
5) log 2

as already noted in Ref33]. Apollonian networks hence
Therefore, the Apollonian network becomes increasinglyprovide a new model for spatial scale-free networks. Impor-
sparse as its size increases. By contrast, the average degtaatly, in contrast to other two-dimensional spatial scale-free

tends to a limiting value, networks[20-27], the Apollonian network can be embedded
in a plane without any edges crossing. In Age al’s
2n, 2x 3" classification scheme, they hence have a genus of[3&lo

(k)= N 31 ~6 for larget. (6) Another important property of the network is the cluster-

v

ing, which provides a measure of the local structure within
Surrounding each nodearek; empty (i.e., not enclosing the network. The clustering coefficient of nodis the prob-

any nodegtriangles. As new nodes are added at the center cibility that a pair of neighbors afare themselves connected,

all these triangles; new connections will be created. There- con

fore, at each step the degree of a node doubles, i.e., c(t) = o (14)

ki(t[ki(t) - 1]

wheren;®" is the number of connections between the neigh-
bors ofi. At each stage, a ring of new connections passing
through all the nodes connecteditss generated. Therefore,

ki(t+1) = 2ki(t). )

Such a rule expresses a preferential attachmh&Bt The
number of new connections is linearly proportional to the

degree. ¢
If t; is the step at which a nodas createdk(t.;)=3 and not = X k(t') =3(2" kit - 1), (15
hence U=t
and
ki(t) =3 X 2!, (8)
2(2 it~ 1)
Therefore k can take a series of discrete values ugkig, 60 = 27i(3 X 2ttei = 1)
=3X% 2. The fraction of the other nodes that the node with 1 4
maximum degree connects to is given by ~—————=—— fort>t.. 1
3 X 2t_tc,i_2 k|(t) ort tC,I ( 6)
-1
Kmax _ 3x 2 %<_)t for larget (9) Therefore, the clustering coefficient of a vertex shows the
n—-1 2x3+1 \3 same inverse proportionality to the degree as has been ob-

tained previously for other deterministic scale-free networks
and is a decreasing fraction of the total as the size of thg36-38. This feature has been taken to be a signature of a
network increases. It follows that the degree distribution ishierarchical structure to the netwdr&6,39, but recently has
given by been shown to partially reflect disassortative correlations
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[40]. In the current networks, this feature can also be inter- !
preted in terms of spatial localization. For a low-degree T *
node, its neighborhood only occupies a small local region in 0.1 T
the packing, and thus would be expected to have strong clus- £ ol
tering. By contrast, high-degree nodes have a more global § 0.01 o
character and are connected to well-separated parts of the £ rt
packing, and so have low clustering. %O,om
The clustering coefficient for the whole graph can be de- 8 g

fined in two ways. The first is a generalization of Ety) to o
the whole graph, and is the probability that any pair of nodes ’
with a common neighbor are themselves connected. Thus, sonoot | 3

22 n" 10 k 100

Ci=r——. a7
Ei ki(ki — 1) FIG. 3. The dependence of the vertex betweenness on degree for

. . the Apollonian network witht=8. There are points representing
The second definition o€ is as the average value of the gach disk and the line connects the average values for a given

local clustering coefficient, i.e.,

1 networks has been often found to depend sensitively not only
Co= n_E G- (18)  on the degree distribution, but also on how correlated the
vt networks ard44—47. For examplek,,(k), the average de-
The difference between these two definitions is the relativgree of the neighbors of nodes with degreeshould be
weight given to nodes with different degree. High-degreeindependent ok for an uncorrelated network.
nodes make a larger contribution® because there will be We can calculat&,, for the Apollonian network using Eqg.
more pairs of nodes that have a high-degree node as a cort¥) to work out how many connections are made at a particu-
mon neighbor, whereas all nodes contribute equallfCio lar step to nodes with a particular degree. Except for the
Typically, C; <C, because, as is the case here, higher-degreigitial disks, no disks created in the same generation, i.e.,
nodes tend to have lower values @f with the same degree, will be connected. All connections to
Substituting in and rearranging gives nodes with higher degree are made at the generation step,
g1_ 1 1/3)t and then connections_ to lower-degree nodes_ are made at each
C,= mza(ﬂ for larget. (19) subsequent step. This leads to the expression

The clustering coefficient goes down as the size of the (k)=
Apollonian network increases. However, when one compares An,(tok(te,t)

r_
ti=te-1

2 ANtk t = DK,

t.=0
C to that for an Erds-Renyi random graph41,42 (Cgr , ¢
=p), one obtains t=t
+ 2 AN (toK(t t — k(1) (21)
& ~ l(§>2t (20) tl=te+1
Cer 612/ °

for k=3x 2t and wherek(t,t) is the degree of a node at
That is, the Apollonian networks become increasingly moregeneratiort that was created at generatin The first sum
clustered than a random graph, as their size incre@e=san  corresponds to the connections made to nodes with higher
be evaluated numerically. As shown in REg3], C, tends to  degree(i.e., t.<t.) when the node was createdtgtand the
a constant at largeof value 0.828. second sum to the connections made to the current lowest-

In Ref.[33], they also calculated the behaviorlgf, the  degree node at each st€p>t.. After substitution and evalu-
average number of steps on the shortest path between agyion of the sums, the above expression simplifies to
two nodesl . showed a small-world behavior, scaling sub- .
logarithmically with network siz§33]. The important role K (k)= 9(&) o 5 +§(t—t ) 22
played by the larger disks in mediating these short paths is n 3 20
illustrated in Fig. 3. The vertex betweenness of a node i%\fter the initial generation stepk,, for a node increases
defined as the fraction of all the shortest paths that pashsnearl with a eg nn
through that node. Fdr=8, 40% of these paths pass through W %’ th gb. tion in t kfai
the central disk in the packingrig. 2). Furthermore, the fiting the above equation in terms Kigives
dependence of the vertex betweenness on the degree is not 4\t/ K\ ~log(4/3)/log 2 3 log(k/3)
far from a power law. This type of behavior is common for Knn(K) = 9(5) (5) 6+ a2 (23

g2

scale-free networkg43].

Correlations in networks, particularly with respect to thek,,(k) is roughly a power-law function ok with exponent
degree, have been a subject of increasing int¢deit This  —0.415. The exponent is negative, implying that the network
is partly because the behavior of models defined on sucls disassortative, i.e., nodes are more likely to be linked to
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FIG. 4. Comparison Oknn/knn_ for the 2D Apollonl_an net- FIG. 5. Assortativity coefficients,, andr,, as a function of the
work to that for randomized versions of the networks. Lines corre-n mper of generations The solid lines are for the 2D Apollonian

sponding to different values of( t=7-15 and 7-8 for the pollo-  network, and the dashed lines for randomized versions of these
nian and randomized networks, respectiyéipve been plotted to  hanyorks with the same degree distribution.

emphasize the universal form of this function for the Apollonian
network.
<St>e B <5>e<t>e

nodes with dissimilar degree. When normalized by the ex- (Sheassort (Delle’

pected value ok for an uncorrelated network wheres andt correspond to the property of interest at either
end of an edgege denotes that the averages are over all
2 t edges, and “assort” means that the average is for a perfectly
uncorr <k ) 4 ; i
Kin =——=6|-] -3, (24)  assortative network:. is therefore a measure of the correla-
(ko 3 tions in the property compared to that for a perfectly assor-
tative network. Disassortative networks have0.

k.(K) has a universal form independent of network size for It' follows that the assortativity coefficient for the degree
larget and smallk. Namely, is given by

(26)

_ (K(Knn(K)) = (K9
k= 22
k(K K\ -log@/3)log 2 (kK3 = (k%)
kunE:ozr = g( ) (25)

(27)

3 Expressions for the quantities in the above equation can be

relatively easily obtained from the degree distribution. This

This is illustrated in Fig. 4. The upward curvature away fromglves . 1o
this power-law form at largé is caused by the logarithmic 3{2,{_ 3+ 4(§> } _ 22t|:2 _ (§> }
term ink in Eqg. (22). _ 4 4
It has been shown that disassortativity can often arise in M= 3tot 3\t 12
networks where self-connections and multiple edges are ex- —[6 - (_) } - 22{2 - <_> ]
cluded[48]. Thereforek,, was compared to that for random S 8 4
networks with the same degree distribution, which were pre- 10/ 2\t
pared using the switching algorith6,49. The randomized ~— §<§> for larget. (28

networks also show disassortativity, but to a somewhat lesser
degree(Fig. 4). The additional disassortativity arises becauser, is always negative, indicating disassortativity. However,
connections to the nodes with the same degree cannot occig magnitude goes to zero as the size of the network in-
in the Apollonian networkexcept for the initial disks creasegFig. 5. This may seem surprising sin&g, always

In particular, as the nodes with=3 are only connected to has a negative slope and has an effective functional form that
higher degree nodeg,(3) is significantly higher than that is independent of sizEEq. (25)]. However, the convergence
for the randomized graptFig. 4). By contrastk,, for the  of r to zero is simply because the denominator corresponding
rest of the network is lower than that for the randomizedto the correlations in a perfectly assortative network scales
graphs. This is also because of the lack of same-degree comore rapidly with size than the numerator, i.e., &@m-
nections, as this gives the higher degree nodes many mopared to —4[Eq. (29)].
connections to the most numeroks 3 nodes than for the We also looked at the community structure of this net-
randomized graphs. work using the algorithm of Girvan and Newmah7]. It

An assortativity coefficient has been proposed that mea- works by starting with the complete network and at each step
sures the degree @élisjassortativity of a propert{50], and  removing the edge that has the maximum edge betweenness,
is defined as where this quantity is recalculated after the removal of every
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FIG. 7. A dendrogram showing the progressive division of the
2D Apollonian packing into communities fa=6 as those sets of

FIG. 6. The best division of the 2D Apollonian packing into edges with largest edge between_ness are removed.A_t right no edges
have been removed and there is a single community of 1gjze

communities fort=6. The disks in the different communities have

. . . - whereas at left all edges have been removed and thene, aeam-
been displaced with respect to each other for clarity. The mOdUIarl%unities of size 1. The number of steps in which sets of edges have
Q=0.5938. been removed increases linearly from right to left. In total, 84 sets

of edges were removed. The threefold symmetry of the packing is

edge and is defined as the fraction qf all the shortest path%tained throughout this process. The vertical dashed line indicates
th.at pass through an edge. If there is more than one edQﬁe set of communities with large€. The inset shows hov®
with the same maximum edge betweenness, they are all ¢z ies as the network is broken up into communities.

moved at the same step. Thus the network is progressively
divided inton, communities. To decide which division of the
network represents the best choice, the modul®itig cal-
culated at each step, and the division of the system wit "
maximumQ is considered to be the bgstl]. Q is defined as communities. . .

the fraction of edges that are within the communities com-. Itis evident thakQ has quite a broad maximum as a func-

: on of the number of communitie® is greater than 0.3
Sggrgerg etc()ji;r:ggu?;%ected for a random graph with the S'am\%vhen there are between 6 and 88 communities. Given the

The best division of the packing into communities is self-similar nature of the packing, one would not expect
shown in Fig. 6 fort=6 and hasQ=0.5938. This value is there to be a strongly preferred size for the communities.

comparable to some of the higher values found for network§imi!arly’ in the Qeterministic scale-frge networks, the hier-
considered previousl{51,52. Interestingly, the Apollonian a'rch|cal modularity means'that there is no c[early pr'eferred
network’s combination of community structure and disassor>'“€ for the modules at which the modularity is significantly
tativity is in contrast to most of the other networks with high enhanced39].
Q, which also tend to be strongly assortative. As expected,
the communities are spatially localized. As the algorithm ) .
only used topological information, this result implies that the ~ The 2D Apollonian network is only one example of a
spatial embedding of the network is clearly reflected in itsSPace-filling self-similar packing. In a similar way to the last
topology. section, a detailed characterization of the topology of contact
The algorithm for detecting communities described above€tworks associated with other self-similar packings could
cannot actually break the threefold symmetry of the packingP® derived. However, here we do not wish to give such a
The best threefold symmetric division has the central disk a§omprehensive account, but to illustrate how some of the key
its own community. However, by assigning this disk to oneféatures of these networks, particularly the exponent of the
of the adjacent communitie®) improves from 0.5872 to degree distribution, depend on the nature of the packing.
0.5938. We have also applied the faster algorithm described First, we shall examine higher-dimensional Apollonian

in Ref. [52], however slightly lower values of) were Packings. The initial configuration that is directly equivalent
obtained. to Fig. 1 is to have touching hyperspheres at the corners of a

sively broken into separate communities as more edges af@'9er hypersphere. The analysis of the last section is rela-
removed. This can be represented by a dendrogram as in Fitively easy to generalize to these cases.

7, which shows the number of communities and their rela- AS now n,(0)=An,(1)=(d+2) and An,(t)=(d+1)An,(t
tionship at each step in the algorithm. Every time two sets of 1) for t>1, it follows that

disks become disconnected, their corresponding lines split. _ -1

The first 53 sets of edges removed only break the packing An,(t)=(d+2)(d+1) (29
into two communities; instead the effect is to make the conand

tact matrix sparser. Further removal of sets of edges then
Igelatively quickly breaks the packing into a large number of

B. Other self-similar packings
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0= @rrra-1) (30

The higher-dimensional equivalent of E) is not so
useful for calculating the degree distribution, for example for
a three-dimensional Apollonian packirg(t+1)=23k;(t)-4.
Instead, an alternative approach has to be used. Each new
neighbor of a nodé createsd new d-simplices involvingi.
In the next generation thesksimplices will be the sites for

new nodes that are also neighborsi ofherefore, FIG. 8. A space-filling bearing between two half-planes. The
pattern can be repeated to the left and to the raghinfinitum In

Aki(t) = ki(t) - ki(t - 1)=dAki(t-1), t>t,;+1. (31) the nomenclature of Ref§54-58, this packing is from Family 1
and has base loop size 4 amdm=2. The half-planes at the top and

As ki(te;)=d+1 andAki(te;+1)=d+1, bottom can be considered as disks with infinite radius.
Ak;(t) = (d+ 1)dt it (32
2d
and Gi(t) = m fort>tg;. (36)
1
ki(t) = dj‘(dt—tcyi +d-2). (33) Again, the local clustering coefficient is inversely propor-
d-1 tional to degree.

In the Apollonian packing of disks, the smallest loops in
the contact network have size three, i.e., they are triangles.
However, space-filling packings of disks are possible, where

log(d+ 1) the smallest loops in the contact network are polygons with
+t— (34  more than three sides. Examples in which the loops all have
an even number of sides are of particular interest since they

Hence, the Apollonian networks associated with higher£an act as space-filling pearings, where all the disks can ro-
dimensional packings are also scale-free networks. The eiéte at the same time without slj65,57. An example of a
ponenty decreases as the dimension of the Apollonian packsPace-filling bearing with “base loop size” 4 ansh=m" is

ing increases, tending to 2 in the limit of large This is shown in Fig. 8. The procedures tq constru_ct such packings
noteworthy since the value of can have significant effects are more comp_le_x than for Apollonian packings and are de-
on network propertief53]. scnk_Jed in detall in Refd.54-54. _

By physical arguments it is easy to see that these higher-_ F|gqre 9 |II.ustrates how the contact_ ngtwork a;so_mated
dimensional Apollonian networks will have very similar with this packln_g develops for a subset initially consisting of
topological properties to the two-dimensional case thafour touching disks. At each stage+1 new nodes are pro-
we have studied in detail. The networks will again be diS_QUced for each empty quadrllateral, dividing Fhe quadrilateral
assortative with respect to degree because of the lack of coHito @ furtherm+2 new quadrilaterals to which new nodes
nections between nodes with the same degree. The hierarci{¥ill be added at the next generation. o
cal structure and the more localized character of the connec- ASsuming that there is one quadrilateral initialy=0),
tions involving low-degree nodes will lead to a strongthe number of empty quadrilaterals after stefs (m+2)".
dependence of the clustering coefficient on degree. This sp&ience,
tial localization will also lead to strong community structure.
Larger hyperspheres are also more likely to have a larger
degree. and

To illustrate how these conjectures can be backed up
analytically, here we derive a general expression for the local
clustering coefficient. We first need to calculate the number
of connections between the neighbors of a node. On genera-
tion a node is surrounded byddimensional simplex, and
then at subsequent steps every new neighbor of a node con-
tributesd new connections to{°". Hence,

By an equivalent analysis to that fd=2, one can show that
Pcunik) follows a power law for large where

log d

An,(t) = (m+ 1)(m+2)"* (37

t=0 t=1

t

nfon(t) - d(d+1) + E dAki(t) FIG. 9. (Color online The development of the contact network
=t for a subset of the packing in Fig. 8 initially consisting of four
touching disks, one of which has infinite radius. The edges in the
—dildt—tc+l+ dd+1)(d-3) (35) network connect the centers of the disks that touch. Those edges
d-1 2d-1 involving the infinitely large disk are parallel, but to emphasize that
they do actually connect to the same node, a box has been added
Substituting into Eq(14) and taking limits gives that enclosed the ends of these edges.
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n’(t) =n,(t) - n,(0) = (m+ 2)t-1. (38) is, the set of points associated with a di3kcontains all the
o . ) points inside the disk boundary, but not the boundary itself.
We exclude the initial boundary disks in the above becauserhe residual seR is then the points that are not part of
they have slightly different properties from the rest of theany of the open disks in the packing, or more formaRy
disks in the iterative scheme. Besides, for sufficiently ldrge =U-Ui, D;, whereU is the set that is being packed, the
their contribution is negligible. fractal dimension oR, is the quantity of interest.
Aside from the first step after a node is created, a node dr must obey K d-<2. The upper bound is obvious,
only gains new connections at every other step, because tliecause, by virtue of the space-filling nature of the Apollo-
new connections are added across alternating diagonals ofan packingR must have zero area. The lower bound fol-

the quadrilaterals, lows from the fact thak/Z, r,=, wherer; is the radius of
disk D;; i.e., the total length of the boundaries is infirfié].
ki(t+2) = (m+2)ki(t). (39 This result can most easily be visualized by projecting the
Therefore _boundaries_ of each_disk onto a diamete_r of the ci_rcle_bound-
' ing the region that is being packed. Points on this diameter
ki(t) = 2(m+ 2)Ete2 for t—t.; even. (40) are projected onto infinitely often. These bounds imply the
_ ' dimension ofR must be fractional, and hence the packing is
In the same way as before, this leads to fractal.
(m+24k2)2-1 (k|2 - So far, no analytic formul_a for thg value of the fra_ctal
Peun(K) = . ~ <-> for t large. dimension for the 2D Apollonian packing has been obtained,
(m+2)-1 but instead its numerical value has been estimated with in-

(41)  creasing precision54,62-6@. Its value is 1.3057. It has

been suggested that the fractal dimension of the Apollonian
Hencey=-3, independent ah. Unlike the Apollonian pack-  packing is the minimum for any space-filling disk packing
ings,An, andk; increase by the same factor+ 2, and so this  [67], because at each step of the generating process the disk
cancels. The power of 2 in the above equation arises becaus#th the maximum possible radius is inserted into each cur-
this increase irk; occurs only at every other step. The situ- vilinear triangle, thus maximizing the area of the region that
ation is more complicated for the case# n, because there must be outside of the residual set. The fractal dimensions
are two subpopulations of disks, and the degree distributiofiound for 2D space-filling bearings are consistent with this
of each subpopulation obeys its own power law. assertion[54,57); all have larger values than that for the

We should note that the contact networks for these spacéipollonian packing, with the largest found being 1.803. In
filling bearings have no triangles, and so the clustering coeffact, as pointed out by Melzak, it is easy to generate a disk
ficient defined by Eq(17) is zero. However, generalized Packing with dimension arbitrarily close to [B7]. If each
clustering coefficients probing higher-order loops have beeflisk in the Apollonian packing in Fig. 1 is replaced by a
proposed. Clearly for these space-filling bearings the numbeguitably scaled image of the whole Apollonian packing, a
of “Squares”(|00p3 of |ength ;I-WI” be Significant|y h|gher new packing is obtained with hlgher fractal dimension. If
than for a random network, although we have not sought tdhis process is repeateat! infinitum a disk packing with a
quantify this. fractal dimension of 2 is eventually obtained.

The results in this section illustrate that the contact net- For space-filling packings af-dimensional hyperspheres,
works associated with other space-filling disk and hyperthere are similar limits for the fractal dimension, namely
sphere packings are also scale-free, but that the exponent off <dr<d. The only calculations have been for three di-
the degree distribution is not a universal constant but demensions. The Apollonian packing hds=2.4739[68], and
pends on the nature of the packing. We could have also coribe values for space-filling bearings are again lafgéx.
sidered other examples, such as scale-free bearings with baseThe fractal dimension is of particular interest here, be-
loop size greater than[%7] and non-Apollonian packings of cause it provides a means to characterize the properties of the
sphereg58,59, and it is likely that these again show some- disk areas. Melzak introduced the exponent of a packipg,
what different behavior. defining it as the minimum value of for which =, r{ no

longer diverges. It was proved by Boyd that for the Apollo-
nian packingde=d, [65]. To examine the divergence prop-
lll. SPATIAL PROPERTIES erties of this sum, we can replace the sum by an integral,
because the divergence is controlled by the disks with small
radii, for which the distribution of radii is quasicontinuous.
s this distribution follows a power lavwp(r) ~r=# [69], we

The 2D Apollonian packing is a well-known example of a
fractal [60], and has many of the typical fractal properties.
For example, inside every curvilinear triangle no matter ho

small, the same pattern of disk packing reoccurs, i.e., it i ave

self-similar. Similarly, the estimated total length of the cir- - Imax Tmax

cumferences of all the circles continues to increase as the E risxf r3p(r)dr ~f rsh

resolution of the measurement increases. One of the most i=1 0 0

important properties of such a packing is its fractal dimen- (St [Tmax

sion. To understand this quantity, we need to define more I[ 1o }

carefully the set for which we wish to know the dimension. s Blo

In the packing, the disks are all considered to be open, that =0 if s<B-1. (42
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randomized

L) . .
—+—-exp(<log(A(k)>)
----- e <A(K)>
001 4 0.1 4
0.0001 0.01
A/ Amax g
16°4 | < 0.001
s
<
w0 -0 0.0001
167 ;428 0.00001 -
0.001 0.01 0.1 1 10° 107 10° 107 00001 0001 001 0.1 1
k/ kmax A/ Amax

FIG. 10. The correlation of disk area with degree for the 2D  g|g. 11. (Color onling The average area of the disks that touch
Apollonian packing(iterated to 15 generationsThere is a dot rep- 5 disk against the area of that disk. The lines are binned averages
resenting each disk. The two lines with data points represent thgy, the Apollonian networks witti=8 and a randomized version of
average value of the area for a given degree, and correspond to bagiat network. There is a data point for each disk in the Apollonian
the normal and logarithmic averages. In addition, lines correspondyacking. Those represented by a cross are in contact with at least

ing to (k/kna)>®” and (k/kna)**?® have been plotted for gne of the three initial disks, and those represented by a diamond
comparison. are not.

Hence dr=d,=p-1. This allows the fractal dimension to be graphs. However, if there was no variation in the areas of the
determined from the exponent of the numericallylobtalne isks with a givenk (i.e., all the areas exactly obeyed the
p(r) [66]. It follows that the area distribution is given by power-law dependence dfthat characterizes the average
p(A) =A%) for the 2D case and more generally for pack-thenr, andr, would be very similar. Instead, because there
ings of d-dimensional hyperspheres the volume distribution,is such a large scatter around the average values—over seven
(L) A2 decades for th&=3 disks in Fig. 10—the effect of the lack
p(V) =V 8~V for larged. (43 of connections between nodes with the same degree only

Given the bounds fodg, the exponent must lie between Weakly carries over to disks with similar areas.
2_1/d and 2. These effects can be examined in more detail by calculat-

One of the areas that is of most interest to us, and whicf'9 A the average area of the neighbors of a disk. Weak
is particularly relevant to the energy landscape networks, idisassortativity is evident over the majority of the range of
the connection between the spatial properties of the Apollo@€as, except for the smallest disks, which show strong as-
nian packings and the topological properties of the Apouo_sortatlwty'(Flg..1]). This latter effec;t is simply because the
nian networks. In Fig. 10, we show the correlation betweersMaller disks in the last generation are connected to the
the disk area and degree. As expected, the larger disks gefMaller disks in the previous generations, as with the spiral
erally have a larger degree. However, for a gikdhere is a p_athways mentlpned above. Interestl_ngly, Fig. 11 clearly di-
wide variety of disk areas. The largest disks are associatedes the disks into two sets depending on whether they are
with the crevices between the initial disks, whereas thdl contact with one of the initial disks, and this is the source
smallest disks are obtained by following a spiral pathway in°f the large fluctuations in the average valueAgf at inter-
the network where each disk along the path is connected tg'€diate values of the disk area.
one circle in each of the three previous generations.

More specifically, the logarithmic average of the disk area
for a givenk closely follows a power law. Assuming(k) IV. DISCUSSION

~k*and using the identitp(A)dA/dk=p(k), one can show  our main motivation for studying the properties of the
that@=2(y=1)/(B-1). For the 2D Apollonian network, this  Apollonian networks is their potential to act as a useful
leads to the prediction=2.428. A line with this exponent is model for the energy landscape networks. However, there is
plotted for comparison in Fig. 10, and broadly follows the one major difference between the two systems. The Apollo-
average(A(k)). By contrast, the average éxfog A(k))] has  nian packings contain an infinite number of disks or hyper-
an exponent of 2.62. spheres, whereas configuration space is divided up into a
Although the correlations associated with the degree arénite number of basins, albeit a number that is an exponen-
most commonly studied, one can use E2p) to define an tially increasing function of the number of atoms in the
assortativity coefficient with respect to any property. Here system[70,71].
we examine the correlations in the areas of touching disks. There are two ways of creating a finite network from the
From the behavior of , in Fig. 5 one can see that there is complete Apollonian network. The first is to consider the
some slight disassortativity, but much weaker than for thenetwork produced after a finite number of generations, and is
degree and with little difference from that for the randomizedthe one we have mainly used so far. The second is to con-
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disks from the later generations, which are in turn more
likely to be connected to the larger higher-degree disks. For
example, for a radius cutoff at 0.0001% of that of the largest
disk, the first disks below the size cutoff occurred in the 13th
generation, and the last disks included were in the 706th
generation.

Preliminary results for the basin area distributions for the
small clusters used to generate the energy landscape net-
works [72] look quite like Fig. 12a), suggesting that Apol-
lonian networks with a given number of generations are the
more appropriate finite version for comparison with these
[ systems. Furthermore, there are then some useful parallels
10¢ 105 ool 0001 001 o1 1 betweent and N, the number of atoms in the cluster. For

"’m‘ax _ . example, the number of minima increases exponentially with
i N and the number of disks/hyperspheres in the Apollonian
networks have a similar dependencetdiqgs.(2) and(30)].
Similarly, as eithert or N increase, both types of networks
become increasingly sparfeqg. (5)], have a smaller absolute

- Nk value for the clustering coefficief@; [Eq. (17)], but a larger
i‘—g 0.001 AN 3 value relative to that for an Eéd-Renyi random grapfEg.
8 (oEOog) O (20)] [28,29.
0.0001 Other similarities between the two types of network in-
105 clude features that are quite common for scale-free networks,
; such as the dependence of vertex betweenness and local clus-
1076 i g tering coefficient on degree. Both are also disassortative
01%]  001% _ 0001%] [29], however there is greater community structure in the

1 10 lo 1000 10000 100000 Apollonian networks[72]. There are also similar relation-
ships between the topological and spatial properties, such as
FIG. 12. () The cumulative size distribution of the disks for an for the dependence of disk or basin areakdi2].
Apollonian packing after a finite number of generations. The lines One of the interesting possibilities raised by the current
are labeled by their value df and an additional straight line with study is the signature of the scale-free topology of the Apol-
the exponent expected for the complete Apollonian packing hagonian network in the power-law behavior of the disk areas.
been added for comparisofin) The cumulative degree distribution Currently, mapping out the whole network of connections
for a series of Apollonian networks where only disks with radii at hetween minima on an energy landscape is only feasible for
leastx% of that of the largest disk contribute. The lines are 'abeledsystems of very small size. Nor are there methods available
by their value ofx, and additional straight lines have been added foryq ~qnstruct a statistical representation of the whole network
comparison, one of which has the exponent expected for the ok, 4 finite sample. Therefore, it is hard to test how generic
plete Apollonian packing. is the scale-free behavior observed for the clusters. However,

sider the network containing only disks that are larger than &€ distribution of the hyperareas of the basins of attraction

certain size. The wide distribution of areas for a giein N an energy landscape is a static quantity that could poten-

Fig. 10 indicates that there could potentially be significantially be statistically sampled for a system of arbitrary size

differences. We know that the first will have a scale-freel32): If this distribution exhibited a power law with exponent

degree distribution, and the second a power-law distributiorr2 [EQ- (43)], it would strongly suggest that underlying this

of radii up to their respective cutoffs, but what about theWas a scale-free energy landscape network, as for the

other way round? Lennard—.Jones clusters. Preliminary calculations indicate
In Fig. 12a), the distribution of radii is shown after dif- that this is the casgr2].

ferent numbers of generations. These distributions approxi-

mately follow _t_he expected power law fer intermediate val- V. CONCLUSIONS

ues of the radii, but this range becomes increasingly small as

t decreases. Furthermore, at smalthe lines curve away We have analyzed the properties of the contact networks

from this power law, because the finite packings only contairof space-filling packings of disks and hyperspheres, focusing

a small fraction of the total number of disks in the completeon the Apollonian packing of two-dimensional disks. Their

packing with thatr. topological properties include a scale-free degree distribution
The degree distributions for networks generated using avhose exponent depends on the nature of the packing, high

size cutoff are shown in Fig. 18). The distributions still overall clustering, a local clustering coefficient that is in-

follow a power law, and are actually smoother, sikds no  versely proportional to degree, disassortativity by degree,

longer just restricted to the values given by E8.. How-  and strong community structure.

ever, the exponent is slightly smaller than predicted by Eq. These networks have many similarities to other determin-

(13). The effect of the size cutoff is to only include the largeristic scale-free networks introduced and analyzed recently

016128-10



SELF-SIMILAR DISK PACKINGS AS MODEL SPATIAL... PHYSICAL REVIEW E 71, 016128(2005

[36—38,73,74 but with the additional feature that they have the Apollonian networks reflects the power-law distribution
a well-defined spatial embedding. For this reason, we havef disk sizes. Similarly, configuration space can be divided
suggested that these packings provide a useful model spatiap into basins of attraction that surround the minima on the
scale-free network that may help to explain the properties oénergy landscape. A similar power-law distribution for the
energy landscapes and the associated scale-free network lofperareas of these basins might thus provide an explanation
connected minima. In particular, the scale-free topology offor the pattern of connections between the minima.
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